JemaahHaji Wafat di Tanah Suci Bertambah Satu, Asal Palembang. Salah satu peristiwa ini termasuk turunnya Hajar Aswad. Batu tersebut merupakan peninggalan dunia Islam. Setiap tahun, umat Islam mengunjungi Ka'bah dan menyaksikan penempatannya. Pengungkapan batu adalah kejadian yang berarti. Melalui batu ini, Nabi menyampaikan pesan persaudaraan. 6 6! 6*5* 4*3* 2*1 6*5* 4 120 (6 3)! 3! 3* 2*1. Operasi-operasi Probabilitas. 52 Sebelum masuk ke dalam operasi probabilitas, ada kata-kata kunci yang biasa digunakan dalam probabilitas, yaitu: (Contoh kasus set E dan F) E dan F : Peristiwa E maupun F sama-sama terjadi. E atau F : Salah satu dari peristiwa E atau F terjadi; atau bisa juga Yohanes3:1-21. 3:1 Adalah seorang Farisi yang bernama Nikodemus, b seorang pemimpin agama c Yahudi. 3:2 Ia datang pada waktu malam kepada Yesus dan berkata: "Rabi, d kami tahu, e bahwa Engkau datang sebagai guru yang diutus Allah; sebab tidak ada seorangpun yang dapat mengadakan tanda-tanda f yang Engkau adakan itu, jika Allah tidak Fast Money. Diketahui bahwa [1+ 1/2] [1+1/3] [1+1/4] [1+1/5] [1+1/n]= 11. BErapakah nilai n yang memenuhi? a. sederhanakan bilangan yang ada didalam kurung b. amati pola perkalian beberapan bilangan awal c. dengan mengamati, tentuka nilai n yang memenuhi persamaan diatass tolongg dijawabb! A.3/2 4/3 5/4 ... n+1/nb. 1 pembilang = n+1 2 penyebut = n 2 setiap pembilang suku n+1 habis dibagi dengan penyebut suku n kecuali penyebut suku pertama yaitu 2c. Dengan memperhatikan pola didapatkan bahwa untuk mendapatkan hasil pembagian maka pembilang n terakhir harus dibagi dengan penyebut suku pertama 2 sehingga didapatkan persamaan n+1/2=11 n+1=11*2 n+1=22 n=22-1 n=21Jadi n yang memenuhi persamaan diatas adalah 21 Merupakan pembuktian dengan cara deduktif, meski namanya induksi. Induksi matematika atau disebut juga induksi lengkap sering dipergunakan untuk pernyataan-pernyataan yang menyangkut bilangan-bilangan ditekankan bahwa induksi matematika hanya digunakan untuk membuktikan kebenaran dari suatu pernyataan atau rumus, bukan untuk menurunkan rumus. Atau lebih tegasnya induksi matematika tidak dapat digunakan untuk menurunkan atau menemukan Induksi MatematikaUntuk setiap bilangan bulat positif n, misalkan Pn adalah pernyataan yang bergantung pada n. JikaP1 benar danuntuk setiap bilangan bulat positif k, jika Pk benar maka Pk + 1 benarmaka pernyataan Pn bernilai benar untuk semua bilangan bulat positif menerapkan prinsip induksi matematika, kita harus melakukan 2 langkahLangkah 1 Buktikan bahwa P1 benar. langkah dasarLangkah 2 Anggap bahwa Pk benar, dan gunakan anggapan ini untuk membuktikan bahwa Pk + 1 benar. langkah induksiPerlu diingat bahwa dalam Langkah 2 kita tidak membuktikan bahwa Pk benar. Kita hanya menunjukkan bahwa jika Pk benar, maka Pk + 1 juga bernilai benar. Anggapan bahwa pernyataan Pk benar disebut sebagai hipotesis menerapkan Prinsip Induksi Matematika, kita harus bisa menyatakan pernyataan Pk + 1 ke dalam pernyataan Pk yang diberikan. Untuk menyatakan Pk + 1, substitusi kuantitas k + 1 ke k dalam pernyataan Pk.Langkah-Langkah Pembuktian Induksi MatematikaDari uraian-uraian diatas, langkah-langkah pembuktian induksi matematika dapat kita urutkan sebagai berikut Langkah dasar Tunjukkan P1 induksi Asumsikan Pk benar untuk sebarang k bilangan asli, kemudian tunjukkan Pk+ 1 juga benar berdasarkan asumsi Pn benar untuk setiap bilangan asli DeretSebelum masuk pada pembuktian deret, ada beberapa hal yang perlu dipahami dengan baik menyangkut Pn u1 + u2 + u3 + … + un = Sn , maka P1 u1 = S1 Pk u1 + u2 + u3 + … + uk = Sk Pk + 1 u1 + u2 + u3 + … + uk + uk+1 = Sk+1Pembuktian KeterbagianPernyataan “a habis dibagi b” bersinonim dengan a kelipatan bb faktor dari ab membagi aJika p habis dibagi a dan q habis dibagi a, maka p + q juga habis dibagi a. Sebagai contoh, 4 habis dibagi 2 dan 6 habis dibagi 2, maka 4 + 6 juga habis dibagi PertidaksamaanBerikut sifat-sifat pertidaksamaan yang sering digunakan 1. Sifat transitif a > b > c ⇒ a > c atau a 0 ⇒ ac b dan c > 0 ⇒ ac > bc3. a b ⇒ a + c > b + cMari kita coba untuk latihan menggunakan sifat-sifat diatas untuk menunjukkan implikasi “jika Pk benar maka Pk + 1 juga benar”.Misalkan Pk 4k 1 + 2nJawab Pn 3n > 1 + 2n Akan dibuktikan Pn berlaku untuk n ≥ 2, n ∈ NNLangkah Dasar Akan ditunjukkan P2 benar 32 = 9 > 1 + = 5 Jadi, P1 benarLangkah Induksi Asumsikan Pk benar, yaitu 3k > 1 + 2k, k ≥ 2Akan ditunjukkan Pk + 1 juga benar, yaitu 3k+1 > 1 + 2k + 13k+1 = 33k 3k+1 > 31 + 2k karena 3k > 1 + 2k 3k+1 = 3 + 6k 3k+1 > 3 + 2k karena 6k > 2k 3k+1 = 1 + 2k + 2 3k+1 = 1 + 2k + 1Jadi, Pk + 1 juga benarBerdasarkan prinsip induksi matematika, terbukti bahwa Pn berlaku untuk setiap bilangan asli n ≥ Buktikan untuk setiap bilangan asli n ≥ 4 berlakun + 1! > 3nJawab Pn n + 1! > 3n Akan dibuktikan Pn berlaku untuk n ≥ 4, n ∈ NN Langkah Dasar Akan ditunjukkan P4 benar 4 + 1! > 34 ruas kiri 5! = = 120 ruas kanan 34 = 81 Jadi, P1 benar Langkah Induksi Asumsikan Pk benar, yaitu k + 1! > 3k , k ≥ 4Akan ditunjukkan Pk + 1 juga benar, yaitu k + 1 + 1! > 3k+1k + 1 + 1! = k + 2! k + 1 + 1! = k + 2k + 1! k + 1 + 1! > k + 23k karena k + 1! > 3k k + 1 + 1! > 33k karena k + 2 > 3 k + 1 + 1! = 3k+1Jadi, Pk + 1 juga benarBerdasarkan prinsip induksi matematika, terbukti bahwa Pn berlaku untuk setiap bilangan asli n ≥ Menjumlahkan angka berpangkat dalam induksi matematika. Buktikan bahwa 13 + 23 + 33 + … + n3 = ¼n2n + 12 1. Tunjukkan kebenarannya untuk n=1 13 = ¼ × 12 × 22 Benar. 2. Asumsikan benar untuk n=k 13 + 23 + 33 + … + k3 = ¼k2k + 12 Benar Asumsi!JawabanSekarang, buktikan kebenarannya untuk “k+1”13 + 23 + 33 + … + k + 13 = ¼k + 12k + 22 ?Kita tahu bahwa 13 + 23 + 33 + … + k3 = ¼k2k + 12 asumsi di atas, jadi kita dapat mengganti semua kecuali suku terakhir¼k2k + 12 + k + 13 = ¼k + 12k + 22Kalikan semua suku dengan 4k2k + 12 + 4k + 13 = k + 12k + 22Semua suku memiliki faktor persekutuan k + 12, sehingga dapat dibatalkank2 + 4k + 1 = k + 22Dan sederhanakank2 + 4k + 4 = k2 + 4k + 4Mereka sama! Jadi memang + 23 + 33 + … + k + 13 = ¼k + 12k + 22 Menjumlahkan angka ganjil untuk induksi + 3 + 5 + … + 2n−1 = n21. Tunjukkan kebenarannya untuk n=11 = 12 Asumsikan benar untuk n=k1 + 3 + 5 + … + 2k−1 = k2 Benar Sebuah anggapan!Sekarang, buktikan kebenarannya untuk “k+1”1 + 3 + 5 + … + 2k−1 + 2k+1−1 = k+12 ?Kita tahu bahwa 1 + 3 + 5 + … + 2k−1 = k2 asumsi di atas, jadi kita dapat melakukan penggantian untuk semua kecuali suku terakhirk2 + 2k+1−1 = k+12 Sekarang jelaskan sebagai berikutk2 + 2k + 2 − 1 = k2 + 2k+1Dan sederhanakank2 + 2k + 1 = k2 + 2k + 1They are the same! So it is + 3 + 5 + … + 2k+1−1 = k+12 Buktikan bahwa jumlah n buah dari bilangan ganjil positif pertama ialah terlebih dahulu basis induksi. Untuk n = 1, maka jumlah satu buah dari bilangan ganjil positif pertama ialah 12 = 1. Hal ini benar karena jumlah dari satu buah bilagan ganjil yang positif pertama ialah induksi dengan mengandaikan pn benar, sebagai berikut1 + 3 + 5 + … + 2n – 1 = n2Selanjutnya, perlihatkan bahwa p n+1 juga benar yakni 1 + 3 + 5 + … + 2n – 1 + 2n + 1 = n + 12 adalah benar. Hal ini bisa ditunjukkan dengan uraian + 3 + 5 + … + 2n – 1 + 2n + 1= [1 + 3 + 5 + … + 2n – 1] + 2n + 1 = n2 + 2n + 1 = n2 + 2n + 1 = n + 12Karena baik langkah basis maupun induksi keduanya sudah ditunjukkan dengan benar, maka total jumlah n buah dari bilangan ganjil positif pertama ialah Buktikan 1 + 3 + 5 + … + 2n – 1 = = 1 + 3 + 5 + … + 2n – 1 = n2. Maka akan mampu menujukkan Pn benar untuk tiap-tiap n PertamaContoh soal induksi matematika dan jawabannya ini pasti mampu mempermudah Anda. Jika menghadapi soal seperti ini, sebaiknya lakukan langkah pertama terlebih dahulu. Langkah awal akan menunjukkan bahwa p1 adalah benar 1 = 12. Jadi, p1 adalah Induksi Berikutnya, bisa langsung menerapkan langkah induksi. Ibaratkan saja jika Pk adalah benar, yaitu1 + 3 + 5 + … + 2k – 1 = k2, k N1 + 3 + 5 + … + 2k – 1 + 2k + 1 – 1 = k + 121 + 3 + 5 + … + 2k – 1 = k21 + 3 + 5 + … + 2k – 1 + 2k + 1 – 1 = k2 + 2k + 1 – 11 + 3 + 5 + … + 2k – 1 + 2k + 1 – 1 = k2 + 2k + 11 + 3 + 5 + … + 2k – 1 + 2k + 1 – 1 = k + 12 Berdasarkan uraian tersebut, maka diketahui bahwa pn adalah benar bagi masing-masing n dari bilangan Buktikan jika 6n + 4 sudah habis dibagi 5 untuk tiap-tiap n seperti contoh soal induksi matematika dan jawabannya yang lalu, pada soal ini Anda juga perlu membuat langkah awal dan Awal Langkah ini akan menunjukkan jika p1 adalah benar. 61 + 4 = 10 habis dibagi oleh angka 5. Hal ini membuktikan bahwa p1 adalah Induksi Berikutnya adalah langkah induksi. Pada langkah induksi, ibaratkan saja pk adalah benar, maka 6k + 4 sudah habis dibagi dengan angka 5, k N. Hal ini akan menunjukkan pk + 1 adalah juga benar yaitu 6k+1 + 4 juga habis dibagi angka + 4 = 66k + 4 6k+1 + 4 = 56k + 6k + 4Jika 56k telah habis dibagi 5 dan 6k + 4 juga habis dibagi 5, maka 56k + 6k + 4 juga pasti akan dibagi habis dengan angka 5. Jadi, pk + 1 adalah Buktikanlah bahwa bagi setiap n N dan n0 N berlaku seperti 1 + 3 + 5 + … + nn + 1/2 = 1/6 n n + 1 n + 2.Persis seperti cara sebelumnya, sebaiknya Anda buat langkah basic dan Awal n = 112 = 1/6 1 1 + 1 1 + 21 = 1 adalah benar Induksi n = k1 + 3 + 5 + … + nn + 1/2 = 1/6 n n + 1 n + 2 juga adalah demikian jelas terbukti bahwa setiap n N dan n0 N berlaku seperti 1 + 3 + 5 + … + nn + 1/2 = 1/6 n n + 1 n + 2. Tentu ini menjadi soal paling sederhana, diantara soal-soal Buktikanlah jika 32n + 22n + 2 benar-benar habis dibagi bisa membuktikannya, lakukang langkah berikutLangkah Pertama 321 + 221+2 = 32 + 24 = 9 + 16 = 25, jadi benar-benar habis dibagi 5. Hal ini Kedua Menggunakan 2 n = k32k + 22k + 2Langkah Ketiga = k + 1= 32k+1 + 222k+2 = 32k+2 + 22k+2+2 = 3232k + 2222k+2 = 1032k + 522k+2 – 32k – 22k+2 = 10 32k + 5 22k+2 – 32k + 22k+2Diperoleh10 32k sudah habis dibagi 5, 522k+2 sudah habis dibagi 5 dan –32k + 22k+2 juga habis dibagi bilangan bulat tidak negatif n, buktikan dengan memakai induksi matematika bahwa 20 + 21 + 22 + … + 2n = 2n+1 – tahu basis induksi terlebih dahulu yaitu 20 = 20+1 – 1. Jadi, sangat jelas bahwa 20 = 1Jika pn benar, yakni 20 + 21 + 22 + … + 2n = 2n+1 – 1 adalah benar, maka tunjukkan bahwa pn+1 juga benar 20 + 21 + 22 + … + 2n = 2n+1 – 1 juga benar, maka tunjukkan bahwa 20 + 21 + 22 + … + 2n + 2n+1 = 20 + 21 + 22 + … + 2n + 2n+1 = 2n+1 – 1 + 2n+1 hipotesis induksi. = 2n+1 + 2n+1 – = – 1 = 2n+2 – 1 = 2n+1+1 – 1Maka dapat dibuktikan bahwa semua bilangan bulat tidak negatif n, terbukti bahwa 20 + 21 + 22 + … + 2n = 2n+1 – MatematikaTes Matematika Deret Angka Untuk Yang Pintar – Tomat, Timun Dan PaprikaTes Matematika “Otak Atik Otak” Jumlah nomor yang harus didapatkan 50 & Nomor yang diberikan 2 8 9 15 20 40Tes Matematika Pengukuran Berat Sebuah botol & tutupnya berberat 110g. Berat botol 100g lebih berat daripada tutupnya. Berapa berat tutupnya?Matematika Jika 2=6, 3=15, 4=24, 5=35, 6=48 Jadi 7=??Tes Matematika Pemecahan Masalah Logika Visual Psikotes Roda Gigi X – Beserta Rumus, Soal & Jawaban Untuk Menghitung Panjang Lintasan RodaRumus Trigonometri Dan Contoh-Contoh Soal Beserta JawabannyaSoal Rumus Kimia Hidrat Air Kristal Dan JawabannyaRumus-Rumus Lingkaran “Volume” Tes Matematika LingkaranBacaan LainnyaBerapa Kecerdasan IQ Anda? Tes IQ Anda Disini10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!Tulisan Menunjukkan Kepribadian Anda & Bagaimana Cara Anda Menulis?Top 10 Sungai Terpanjang Di DuniaKepalan Tangan Menandakan Karakter Anda & Kepalan nomer berapa yang Anda miliki?Sistem Reproduksi Manusia, Hewan dan TumbuhanUnduh / Download Aplikasi HP Pinter PandaiRespons “ohh begitu ya…” akan sering terdengar jika Anda memasang applikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS AppleSumber The Math Page, Purple Math, Oxford Math Center, Encyclopedia of MathematicsPinter Pandai “Bersama-Sama Berbagi Ilmu” Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing

diketahui bahwa 1 1 3 1 1 4